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NOTE ON THE CALCULATION OF RESISTANCE AND FLEXURE OF SOLID 'C-& 

STRUCTURAL PARTS IflTH SINGLF, AND DOUBLE CURVATUFE, WITH 
CONSIDERATION OF THE VARIOUS FORCES ACTING ON THE PARTS 

I N  ALL DIRECTIONS 

34 Barr6 de Saint-Venant+ 

Pb 
The theor ies  of Navier, covering only the  case of stress i n  

single-curvature so l id  s t ruc tu ra l  members i s  r e c t i f i e d  and 

extended t o  double-curvature p a r t s  subjected t o  simultaneous 

tors ion  and f lexure ,  including in t e rac t ion  of t h e  individual  

fibers and cross sections. Equations of equilibrium f o r  e 

t e r n a l  and i n t e r n a l  forces ,  with enphasis on d i l a t a t i o n  and 

s l i p ,  are given ind ica t ing  the numerical maximum f o r  t h e  

various forces  i n  members with f r e e  and clamped end. A 

general  method i s  developed f o r  determining unknown react ions 

and in te rac t ions  in any systan of so l id  bodies, which sub- 

divides t h e  member i n t o  individual elements and thus defines 

t h e  forces  involved by no more than s ix  indeterminates, 

eliminating t h e  Poisson transcendental discontin$ty formulas. 

Section 1. Introduction 

1. By means of expressing t h e  equilibrium of ex terna l  forces  act ing on a 

s o l i d  body by the  i n t e r n a l  forces  tha t  manifest themselves across  one of i t s  

t ransverse  sect ions it i s  possible  t o  determine t h e  magnitude of d i l a t a t i o n s  and 

contract ions undergone by t h e  various parts of t h e  body; on the  one hand, this 
~~ - 
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permits defining t h e  conditions of the res i s tance  of t h e  body t o  given forces  

and, on the  other  hand, t o  ca lcu la te  - if required - t h e  displacements of i t s  

poin ts  and t h e  deformations r e su l t i ng  from this. 

However, it i s  known t h a t  the  equilibrium of forces  i n  space i s  generally 

expressed by six equations, t h ree  of which a r e  equations of components and three 

of moments. , Despite this f a c t ,  t h e  present theory on t h e  res i s tance  of s o l i d  

bodies, represented by t h e  highly usefu l  and important work done by Navier, 

never uses  more than two equations. 

/9&3 

! 

Could t h i s  be due t o  t h e  f a c t  t ha t  this theory i s  always l imited t o  cases 

f o r  which t h e  other  fou r  equations do not exis t?  T h i s  question must be answered 

i n  t h e  negative s ince not only does this theory disregard ( f o r  example) t he  case 

of double-curvature curves, the  case of a body which simultaneously i s  bent and ,  

twisted,  etc. but it a l s o  disregards, i n  t h e  t r ea t ed  cases, some of t h e  most , 

bas ic  circumstances. 

, 

I n  addition, this pa r t i cu la r  theory assumes tha t  a l l  plane sect ions remain 

plane and that t h e  individual  f i b e r s  i n to  which t h e  body i s  imagined t o  be sub- 

divided behave a s  though they were i so la ted  o r  without mutual interact ion.  HOW 

ever, recent research, based on exactly this work by Navier and confirmed i n  ex- 

periments by Savart and Cagniard de Latour, makes it q u i t e  impossible t o  accept 

t h e s e  two hypotheses i n  qu i t e  a few cases. 

Another objection t o  this theory i s  i t s  - a t  l e a s t  apparently - complexity 

s ince  it always gives t h e  computation of displacement of t h e  points  before t h e  

conditions of nonrupture; however, such computation is use less  in most of t h e  

cases, making it preferable  t o  simply der ive the  equations of res i s tance  t h a t  

a r e  of grea tes t  importance f o r  p rac t i ca l  use. 

F ina l ly ,  t h e  theory does not furn ish  a general  method f o r  determining t h e  
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reac t ions  of f ixed  poin ts  o r  t he  unknown mutual i n t e rac t ion  of various parts of 
t h e  

d&ne s y s t m ;  from t h i s  it follows tha t  Navier, while resolving in an e n t i r e l y  

, sa t i s f ac to ry  manner many cases which previously had remained unsolved, f i n a l l y  

returned - f o r  many other  cases - t o  purely hypothetical  reso lu t ions  of t h e  

fo rces  which had been en t i r e ly  adequate before  Navierts time, 

In  my report  I am making an a t t m p t  t o  f i l l  these voids, t o  correct  t h e  in+ 

accuracies,  and t o  eliminate any useless  complication. 

ca lcu la t ion  t h e  e f f e c t s  of l a t e r a l  s l i p  due t o  these t ransverse  components, 

I a l s o  included in t he  , 

whose omission had been t h e  main point in t h e  objection made by Vicat t o  t h e  

e n t i r e  theory of t h e  res i s tance  of solids. 

a second equation of t ransverse moments, t h i s  general  case mentioned by Persy 

can be solved qu i t e  simply, where t h e  conventionally posed equilibrium no longer 

exists and where t h e  f lexure  of t h e  body occurs necessar i ly  i n  a d i rec t ion  dif- 

f e r e n t  from t h a t  a t  which it had been subject t o  bending, 

t h e  res i s tance  calculat ions t o  cases of simultaneous f l exure  and tors ion  which 

a r e  f requent ly  encountered when taking i n t o  consideration that a twisted speci- 

I w i l l  demonstrate t h a t ,  by means of 

I will a l so  extend 

men has almost never suffered this tors ion  by a so-called couple. 

t ake  i n t o  consideration that  t h e  plane sect ions become skewed and that they in- 

c l i n e  s l i g h t l y  with respect  t o  t h e  cent ra l  f i b e r s  which l a t t e r  exert  a mutual 

I w i l l  a l s o  

i n t e r a c t i o n  which cannot be neglected. I w i l l  a l so  furn ish  new d i f f e r e n t i a l  

equations f o r  minor d isp lacments  of specimens with double curvature and set 

up extremely simple in t eg ra l s  derived from these th ree  simultaneous equations of 

t h e  t h i r d  order with nonconstant coeff ic ients ,  

I n  addition, p r a c t i c a l  application examples will be given f o r  most of t h e  

new formulas, followed by a general  method f o r  determining t h e  react ions and in- 

t e r a c t i o n s  which cannot be derived from the  given forces  by ord ina ry  equations 
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of s t a t i c s :  I bel leve that if a cer ta in  e f f o r t  i s  made t o  es tab l i sh  and solve 

a l l  these equations, although they a r e  numerous but a l l  of t h e  first degree, 

which r e s u l t  f r o m  this method i n  a l l  cases, then t h e  expression f o r  t he  condi- 1 
1 

t i o n s  of r e s i s t ance  in any framework system will contain j u s t  as few i n d e t e h -  

a te  and a r b i t r a r y  quant i t ies  a s  those r e fe r r ing  t o  suspension bridges3c. 

l 

Section 2. Equations of Equilibrium f o r  I n t e r i o r  and Exter ior  Forces 

2. By t h e  term d i l a t a t ion ,  we will understand here, in t h e  d i r ec t ion  of a 

short  ma te r i a l  s t r a igh t  l i n e  a t  t h e  i n t e r i o r  of t h e  body, t he  degree of elonga- 

t i o n  (pos i t i ve  o r  negative) suffered by this s t r a i g h t  line due t o  displacements 

of t h e  molecules. The tern s l ip ,  on a small plane mater ia l  surface, i s  t o  mean 

t h e  inc l ina t ion  assumed by a s t r a igh t  l ine t o  this surface which, or ig ina l ly ,  

had been perpendicular: The motion of t he  surface contr ibutes  t o  t h e  s l i p  as 

1 does t h e  motion of t h e  s t r a igh t  Une. 1 

L e t  (1' denote one of t h e  transverse sect ions of a so l id  body, normal t o  t h e !  

s t r a i g h t  axis o r  curve that connects t h e i r  centers  of gravity. 

Le t  u and v be t h e  coordinates of t h e  center  m of t he  elanent do? with re- 

spect t o  t h e  two pr inc ipa l  i n e r t i a  axes of the  sect ion passing through the  

center  of grav i ty  M. 

Let r be  t h e  dis tance k. 

Let  a be t h e  longi tudinal  d i l a t a t ion  suffered by one f i b e r  o r  by a prisma- 

t i c  port ion of t he  body, almost p a r a l l e l  t o  t h e  axis, having dw as base and 

terminat ing a t  a second close-by section ti)' . 
3 t  A por t ion  of t he  formulas and methods i n  this report  were furnished i n  1837 
and 1838 t o  students of t h e  Mechanical Engineering College (bridges and high- 
ways) i n  t h e  course of applied mechanics which I conducted on suggestion of 
Mr.Coriolis. 
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Let g be t h e  s l i p  on t h e  sect ionm a t  t h e  poin t  m. 

Let g' , g'f be t h i s  same s l i p  estimated p a r a l l e l  t o  t h e  two p r inc ipa l  axes ' 

,of u and v. 
I 

Let h, R, &, gb' be t h e  values of these  quan t i t i e s  f o r  u = 0, v =  0. &.& 
Let u = f v"dw, u' = u'dw be the moments of i n e r t i a  of t h e  sec t ion  u) 

I 

about t h e  axis of u and t h e  a x i s  of v. 

Despite t h e  negl ig ib le  inc l ina t ion  of t h e  f i b e r s  on these  two sect ions,  i t :  

i s  q u i t e  obvious tha t ,  by neglecting t h e  extremely small quan t i t i e s  of higher 

order as w e l l  as t h e  minor influence o f  t h e  curvature of t h e  sect ions on t h e  

length of t h e  f i b e r s  (see below), t he  expression of t h i s  length between t h e  t w o ,  

sec t ions  would be of t h e  first degree i n  u and v, before as w e l l  as af ter  t h e  

displacements; t h e  same statement holds f o r  t h e  d i l a t a t ion .  

following expression i s  obtained f o r  t h e  latter: 

, 

Consequently, t h e  , 

3 = 2, + au + bo. (1) 

The s l i p  a t  t h e  poin t  m i s  due to t h e  following causes: 1) The sec t ion  u)' 

has turned through a small angle n i t h  respect  t o  t h e  sec t ion  w; i f  8 i s  t h e  quo- 

t i e n t  of t h i s  small angle by t h e  distance of t h e  two sect ions,  then 8 r  w i l l  be 

t h e  i nc l ina t ion  acquired, on t h e  axis of  the  member, by t h e  previous normal t o  

t h e  sec t ion  w a t  t h e  point  m, which leads t o  pro jec t ions  8v, -8u on two planes 

perpendicular t o  w and passing through t h e  axes of u and V .  

i s  inc l ined ,  on t h e  sect ion,  by a small angle 

2) The a x i s  i t s e l f  

whose pro jec t ions  onto t h e  

same planes are denoted by 4 ,  e. 
be r ead i ly  demonstrated, on the  basis  of a f e w  examples, t h a t ,  i f  w is  t h e  van- 

3) This surface has become skewed. It can 

i sh ing ly  shor t  d i s tance  of a poin t  on t h i s  surface f r o m  i t s  cen t r a l  t angent ia l  

plane, i t s  form must be of t h e  type represented by t h e  equation w = Yuv (approx- 

imately a double windmill sail), which a l so  results from an ana lys i s  by Cauchy; 
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thus, t h e  share  of t h e  skewing i n  t h e  s l i p ,  estimated i n  accordance with t h e  

d i r ec t ions  of u and v,  can be represented approximately by -yv, -yu. 

Consequently, 
g = go + eo - 6 = g; - oU - yu. 

However, t h e  skewing y and t h e  tors ion 6 are not independent of each other. 

Cauchy as w e l l  as myself have found, f o r  a rectangular sec t ion  and by applying 

h i s  ana lys i s  t o  a sect ion of a d i f f e ren t  form, t h a t  

- -  I from which it follows t h a t  

3 .  Let now rt be t h e  sum of the components, p a r a l l e l  t o  t h e  tangent && 
t o  t h e  axis  of t h e  member a t  t h e  point M, of a l l  t h e  fo rces  ac t ing  from t h i s  

po in t  up t o  t h e  extremit ies  of t h e  s t ruc tu ra l  member. 

L e t  Pu, Pv be t h e  same components i n  t h e  d i r ec t ion  of t he  p r inc ipa l  axes 

I&, MV of t h e  section. 

Let Ma, Q, M, be t h e  sums of  t h e  moments of t h e  same forces  about t h e  

t h r e e  same rectangular l i nes .  

L e t  E be t h e  coef f ic ien t  by which t h e  d i l a t a t i o n  of an  i so l a t ed  prism, 

with a base of 1 m", must be multiplied f o r  obtaining t h e  forces  ab le  t o  pro- 

duce d i l a t a t ion .  

Let G be t h e  coef f ic ien t  of t h e  same type, w i t h  respect  t o  t h e  s l i p .  

Let nu, rrv be t h e  lateral pressures t o  which t h e  f i b e r  under consideration 

can be subjected on i ts  two faces  perpendicular t o  u and t o  v per  un i t  surface. 

Let us neglect t he  rare case (as also t h e  case of considerable f r i c t i o n  exerted 

on t h e  s ides  of t h e  specimen) where  these pressures are no longer perpendicular 
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t o  t h e  fibers. 

L e t  US assume tha t  t h e  force able t o  produce d i l a t a t ion  of t h e  f iber  will 

be Edw(ao + au + bv) without t he  pressures nu, vv;  however, it is known t h a t  

these two forces  each generate a longitudinal d i l a t a t ion  equal t o  one quar te r  , 

of the  la teral  contraction t h a t  they a r e  able  t o  produce ( i n  t h i s  discussion, I' 

r e s t r i c t  myself t o  the  case of an e l a s t i c i t y  equal i n  a l l  d i rec t ions) ;  conse- 

quently, t h e  longi tudinal  force dl1 only be 

(3) [ E p O  4- a 4  + bu) - f (x. + n,)] do. 

This force,  assuming i n  f i r s t  approximation t h a t  5 ,  vv are functions of t h e  

f irst  degree of u and v,  will then be wr i t ten  as follows: 

The t ransverse i n t e r i o r  forces are obtained on multiplying t h e  expressions (2)  ' 

by Gdw. I 1 
Thus, using t h e  sums of t h e  components and moments of t h e  i n t e r i o r  forces  ~ ~ 

with respect  t o  t h e  same axes as t h e  ex te r io r  forces, we W i l l  obtain t h e  f o l l o y  

ing  expression f o r  t h e  equilibrium, taking i n t o  consideration Judw = 0, Jvdw = 

= 0, Juvdw = 0: 

pI = ~@a;, r, = GU&, P, = Go&,, 

hi,= M, = apw, G.,-; 6. r +  . 
(5)  a .i 

. .. 

m Sect ion 3. Conditions of Resistance t o  Rupture o r  t o  Alterat ion 
i n  E l a s t i c i t y  
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Thus, l e t  %-, 4 be t h e  grea tes t  d i l a t a t i o n  and t h e  g rea t e s t  t ransverse  

s l i p  t o  which a prism of t h e  same material  can be subjected without r i s k  (where; 

o denotes t h a t  the forces  %, r, produce no changes i n  t h e  e l a s t i c i t y ,  even I 

over prolonged periods of t h e ) .  Then, t h e  result f o r  t h e  equations o f  resist- 

l 

ance w i l l  be as follows: 

1) If Pu, Pv, M o  are zero, i.e., i f  t he re  are only d i l a t a t i o n s  present  (or ,  

properly speaking, flexures produced by t h e  unequal d i l a t a t i o n s  of t h e  f i b e r s ) ,  

we have 

2) If PR, h, tlV, nu, nv a r e  zero, i.e., i f  only s l i p  is present ( o r  tor- 

s ion) ,  we have 

5. If both d i l a t a t i o n s  and s l i p  are present at t h e  same t h e ,  these  fomu- 

las are no longer val id;  any s l i p ,  i n  d e f i n i t e  oblique d i rec t ions ,  produces 

molecular spreading and crowding, which might render such s l i p  r e l a t i v e l y  

dangerous. This means t h a t  t h e  e f fec ts  of s l i p  coincide with those produced by 

d i l a t a t i o n .  

However, it is  easy t o  prove that ,  i f  a, represents t h e  d i l a t a t i o n  taking , 

place  i n  t h e  d i r ec t ion  of t h e  s l i p  g a t  t h e  poin t  m under consideration, t h e  

following d i l a t a t i o n  w i l l  be obtained i n  a d i r ec t ion  making an angle y w i t h  t h e  

f ibe r  such t h a t  t an  2%) g :  
a - a, 
I -(a a + 3 , )  f - 3')' $- g', 
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and t h a t  t h i s  d i l a t a t i o n  (pos i t i ve  or  negative) i s  t h e  g r e a t e s t  d i l a t a t i o n  t h a t  

can take  p lace  about t h e  po in t  m. 

w The maximum of eq.(lO) must be equated t o  t o  obta in  t h e  res i s tance  
E 

I 
I 

I 
1 
1 

equation applicable t o  a l l  cases. Let us  r e s t r i c t  our present  calculat ion t o  

t h e  case in which nu, nv are negl igible ,  so tha t ,  as is w e l l  known, ag = - &?I 

: and eq. (10) become$- 

---: I 
2 
5 

Taking i n t o  consideration, as i s  also known, G = - E, we Will then have , 

60 This expression reduces t o  eq.(9) i f  Pp, I&, Mv a r e  zero and i f  it i s  

assumed t h a t  r, = 4- €$, . 
5 

Le t  us note a l s o  t h a t  this expression i s  simpler and more symmetrical t h a n ,  

i f ,  with respect  t o  to rs ion ,  one would have adhered t o  t h e  conventional theory 

which neglec ts  t h e  skewing. 

The expression i s  even f u r t h e r  simplified i n  t h e  most common cases i n  
I 

which t h e  terms i n  PQ, Pu, Pv are negl igible;  however, an extraordinary degree ' 

of s impl i c i ty  i s  obtained when t h e  sect ion becomes a c i r c l e ,  a square, o r  a 

four-point star which configuration is frequently used f o r  cast ings.  Then, 

u = u' and, if i s  t h e  g rea t e r  of the two moments about t h e  diagonals or  

3s I discovered t h i s  formula i n  1837. Poncelet used t h i s  formula in h i s  course 
o f  i n d u s t r i a l  mechanics a t  t h e  facul ty  and i n s i s t e d  on t h e  necess i ty  t o  take 
t h e  implications of t h i s  formula in to  consideration. 
m e  in his unpublished reports .  

He was kind enough t o  c i t e  
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about t h e  l a rge r  diameters 2r' of t h e  sect ion,  we w i l l  have 

1 

R,=num.rnaxim.- 1 ( i M d k g @ ; + ~ )  5 
1 
p r  

1 .  
and t h e  quantity of the  second term wi l l  reduce t o  

a c i r c l e ,  where I4 denotes the  t o t a l  moment of t he  forces.  

I would be completely wrong i f  the s implici ty  of these res i s tance  formulas 

f o r  cases of simultaneous f lexure and tors ion  would not prove t h e  va l id i ty  of 

t h e  pr inc ip les  used i n  t h e i r  derivation. 

By eliminating "or >" and 'kumerical maximum'' f r o m  these formulas, they 

W i l l  a l s o  become so-called equations of equal res is tance.  

Section 4.. Application t o  Several Examples. Difference from Results of the  
Earlier Theories 

7. Rectangular specimen s t ressed perpendicularly t o  i t s  axis but obliquelx 

1 t o  t h e  s ides  of i t s  base. 

length of the  specimen clamped at one end, P t h e  force s t r e s s ing  t h i s  specimen 

a t  t h e  o ther  end, and cp the  angle made by this force With the  s ide  c; we then 

obtain [ eq. (6) 1: 

Let b and c be t h e  two sides of t he  base, a t h e  

R,= 6 a P  E ( b c o s 9  +'csinp), 

which i s  a much simpler formula than th6 formula of t h e  o lder  theory 

where only a s ingle  moment about an oblique s t r a igh t  l i n e  6 a P  bsiop + e m ?  - 
bc b'sinlp+Ccos*p 

i s  used while the  other  moment of the i n t e r i o r  forces  i s  neglected. 

If t h e  angle (0 i s  45', t he  ratio of t he  values of P derived from the  old 

and from t h e  new formula would be LO8 at c = 1.5b, o r  1.25 a t  c = 2b, and 1.67 

a t  c = 3b. From this it follows tha t  t h e  old formula may give a f a l s e  securi ty  

t o  t h e  designers,  thus inducing them t o  load the  s t r u c t u r a l  p a r t s  t o  more t h a n  
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t h e i r  load-carrying capacity. 

80 Rectangular specimen of shor, length, clamped a t  one end and stressed 

perpendicularlF a t  t h e  o the r  end. 

y ie ld ing  

I n  t h i s  case, Pu i s  no longer negl ig ib le ,  
I 

The value by which t h e  quantity i n  brackets of t h e  second term exceeds unity 

represents  t h e  por t ion  o f  t h e  influence of t h i s  transverse component which tends 

t o  cu t  t h e  fibers and which had been neglected i n  t h e  old theory. 

f o r  c = a, 2a, 3a, 4a is, successively, 3, 12&, 26, 4 s .  

This excess, 

9. Same specimen, with t h e  weight P u n i f o d y  d i s t r ibu ted  over i t s  upper 

I am using this case as an example f o r  t h e  influence of t h e  lateral surface. 

pressure on t h e  fibers (N0.k). Then, m 

and 

. . . .  . . ,* 
. . l i  .'; ; . ...... 

. . . . .  
, . I  

, .  
. .  . .  , . . . . .  ,.; .. . .  

. . .  . .  . . . . . . . . .  . .  . . .  , I .  : 
. . . . .  . . . .  . . . . . .  , _ . .  . . .  : a . .  . .:. . .  

. .  

. %  

The influence i s  much g rea t e r  than t h a t  of t h e  transverse s l i p  s ince  t h e  

quant i ty  i n  brackets exceeds unity; fo r  c = a, this excess i s  U.5k and, f o r  

c = 2a, it is  43%. 

Similar ly ,  i n  t h e  case of t h e  preceding paragraph   NO.^), a lateral pres- 

su re  must be present there ,  which i s  d i f f i c u l t  t o  evaluate  exact ly  but whose in- 

f luence presumably equals t h a t  of the s l i p .  

10. Sol ids  of equal res is tance.  Taking t h e  s l i p  i n t o  consideration will 

eliminate a paradox f r o m  t h e  theory o f  these  so l id s ,  produced by conventional 

formulas: It i s  known t h a t  these formulas r e s u l t  in zero thickness a t  t h e  po in t s  

of support. Ny own formulas furn ish  no such result, presumably due t o  t h e  f a c t  

11 



. .  

t h a t  t h e  t ransverse component Py had been neglected i n  the  conventional for- 

mulas. 

11. Rectangular specimen, with simultaneous f l exure  and torsion. Let us 

assume t h a t  the  weight P of t he  member described i n  paragraph No.? a c t s  over 

t h e  intermediary of a horizontal  lever  arm of a length h, so t h a t  

Let (0 = 0; then, the  quantity i n  brackets W i l l  exceed unity,  

f o r  c = b, h = &, by O.U, f o r  c = 2b, h = $a, by 0.31; 

‘h = a,  by 0.45 h = 3, by 0.91. 

This cons t i tu tes  the  proportion of t he  influence of to rs ion  which the  new 

formulas a t t exp t  t o  estimate. 

12. Revolving sha f t  with c i rcu lar  o r  square cross section, bent and twisteg 

under t h e  act ion of two gear t r a i n s  o r  two drive belts. 

l a  (13) i s  used i n  this case. 

The very simple fomu- 

13. Horizontal half-circle ,  clamped o r  bui l t - in  a t  one end and s t ressed a t  

Here, rupture does not take place a t  the  point  of t h e  o the r  end by a weight. 

clamping as i s  t h e  case i n  s t r a i g h t  specimens but a t  0.226 of t he  length, and 

the  res i s tance  i s  1,408 times t h a t  of a s t r a igh t  specimen having a length 

equal t o  i t s  diameter. 

/951 

14.. Vert ical  s p i r a l  spring, extended o r  compressed by a weight P. Let CI, 

be the  radius  of t h e  cylinder of t h e  ax is ,  r the  radius  of the  spring of circu- 

lar  cross  section, and CP t h e  constant angle made by the a x i s  With the  horizon 

so t h a t  the  complete formula W i l l  y ie ld  

12 



. 

T h i s  formula c l e a r l r  shows t h e  separate influences of d i l a t a t i o n  o r  longi tudina l  

contraction of t h e  wire, of i t s  flexure, t h e  lateral s l i p  of i t s  individual 

p a r t s ,  and i t s  tors ion.  

I am convinced t h a t  this formula is qu i t e  u se fu l  i n  experiments on s p i r a l  

specimens f o r  determining t h e  magnitude of t h e  quan t i t i e s  I$ ,  f o r  which - unt i l  

now - only vague data had been available. 

Section 5. Determination of t he  Displacements of Points of Sol id  Bodies o r  
of Their Deformations 

15. Using t h e  nota t ions  of paragraphs Nos.2 and 3, l e t  

x, y, z be t h e  coordinates of t h e  poin t  K of t h e  a x i s  

of t h e  body 

ds be t h e  element of t h i s  a x i s  

p be i ts  radius  of curvature 

e be t h e  angle made, on t h e  sec t ion  u), by t h e  

prolongation of t h i s  radius with the  p r inc ipa l  

a x i s  of t h e  v 

ds - be t h e  angle of two adjacent osculating planes 
7 

6 be t h e  cha rac t e r i s t i c  of t he  var ia t ions  by 

displacement 

before 

t h e  

displacements. 

~ ' = d x ,  v=dy,  ~ = d t ,  (=de, 
X = dydat - th(ray, Y = dzd'x - d r d a ~ ,  2 = dxd'y - dydax. 

I found t h e  following ( r e s t r i c t i n g  t h e  ca lcu la t ion  in t h i s  repor t  t o  t h e  

case i n  which vu and nV a r e  negligible): 

a& 8 ad# 8 dg: 3 = - -+ (u sin e + v cos e) - -+ (ucos e - vsin e) - + u =+ v 4 :  - u v 9 , .  
& * P  P & d8 

fii I dr y = -&+ ;i;d-. * .  . .. _ '  I 



The last  term of a represents the  influence of skewing on t h e  d i la ta t ion .  

term always y ie lds  zero components, and moments tha t  generally a r e  zero and al- 

The 

ways are s m a l l ,  which i s  t h e  reason fo r  t he  f a c t  t h a t  t h i s  term had been neg- 

lec ted  i n  paragraph No.2 and w i l l  be neglected a l so  here. 

become 

Then, eqs.(5) /952 
I 

By eliminating & ,. g ,  8 ,  this formula y i e lds  

where D, F, T are polynomials not wri t ten out here  and where everything i s  

known i f  5 ,  1, C; a r e  su f f i c i en t ly  small t o  exert no not iceable  influence on the  

components and lever  arms of the  forces+$. 

On expanding the  f i r s t  terms i n  a s e r i e s  by d i f f e ren t i a t ing ,  with respect 

t o  6 ,  t h e  known expressions of ds, - ds , and - in x, y, z and replacing Ex, 

6y, 6 2  by 5 ,  1, C ,  three d i f f e r e n t i a l  equations of the  first,  second, and th i rd  

ds 
P 7 

order  would be obtained between these displacements; these equations w i l l  not 

be given here s ince they contain a large number of terms. It i s  su f f i c i en t  f o r  

me t o  state t h a t  I have been able  t o  in t eg ra t e  them, y ie ld ing  

% I n  t h e  opposite case, the same d i f f e r e n t i a l  equations would be obtained, ex- 

f i c u l t y  of in tegra t ion  would be added. 
cept  t h a t  t h e  second terms would then contain E,  Ti, 5 and t h a t  only the  dif-  



17. It may be surpr i s ing  t o  encounter i n  my equations a ce r t a in  e n t i r e l y  

new quant i ty  E which no one so  far had ever taken i n t o  consideration and which 

i s  more o r  less on t h e  same foot ing as t h e  angles of contingence and of plane 

d s  osculation - ds and -. 
P 

ample t h a t  t h i s  angular displacement of t h e  rad ius  of curvature along t h e  sec- 

t i o n  must necessar i ly  en te r  our analysis. 

I believe t h a t  it i s  easy t o  demonstrate on an ex- 
7 

Let us imagine an e l a s t i c  bar of double curvature, confined on a l l  s ides  

i n  a f ixed  and r i g i d  conduit, but s t i l l  ro t a t ab le  about i tsel f  i n  v i e w  of the/953 

f a c t  t h a t  t h e  cross  sect ion of this bar i s  assumed t o  be c i r c u l a r  as t h a t  of t h e  

conduit. 

shortened and t h e  shor tes t  f i b e r s  a r e  elongated and t h a t  a l so  to r s ions  are 

present i f  the  ro t a t ions  impressed on a l l  cross  sec t ions  had not been t h e  same: 

The e l a s t i c i t y  of t h e  body, i n  a l l  cases, would have s t rongly resisted such 

displacements of i ts points. 

I n  t h i s  motion, it i s  assumed t h a t  t h e  longest  fibers are forcedly 

However, ne i the r  t he  r a d i i  o f  curvature nor t h e  osculating planes of t h e  

axLs Will have changed i n  any manner whatsoewr. 

Consequently, t h e  so-called res i s tances  t o  bending and to r s ion  do not de- 

pend uniquely on t h e  var ia t ion  i n  the angles of contingence o r  on t h e  angles in- 

cluded between t h e  osculating planes; these  res i s tances  depend t o  t h e  same de- 

gree  OR another f ac to r ,  namely, on the type of displacement t h a t  had taken place 

i n  t h e  mentioned example; this i s  exactly, on each cross  sect ion,  t h e  angular 

displacement designated b, v me as e.  

It is  thus obvious t h a t  it i s  useless  t o  look f o r  a so lu t ion  of t h e  prob- 

lem of deformation of e l a s t i c  specimens with double curvature when r e s t r i c t i n g  

t h e  ca lcu la t ion  t o  a consideration of only the  poin ts  on t h e i r  a x i s .  It i s  

absolu te ly  necessary t o  take t h e  events occurring outside of t h i s  axis i n t o  



consideration. It seems t o  me t h a t  t h i s  f inding explains an e r r o r  by Lagrange 

which a l s o  had been made by Poisson+C despi te  t h e  f a c t  t h a t  this error had been 

pointed out by Binet as ea r ly  as 1814.. 

Section 6. Limit Conditions. General Method f o r  Determining Unknown Reactions 
and In te rac t ions  i n  a Given System of Sol id  Specimens 

This method cons is t s  in defining t h e  

t h e  specimens, by leaving t h e  magnitudes, 

involved forces  i n  an indeterminate form. 

as a function of these  wanted quant i t ies ,  

displacements of material po in t s  of 

t h e  levers, and t h e  d i r ec t ions  of t h e  

Once t h e  displacements are expressed 

d e f i n i t e  conditions can be estab- 

l i shed  which must be s a t i s f i e d  at  t h e  po in t s  of support o r  clamping o r  a t  t h e  

junctions of d i f f e r e n t  members, o r  else at  t h e  po in t s  of linkage of d i f f e r e n t  

p a r t s  i n t o  which one and t h e  same s t r u c t u r a l  member must be subdivided because 

of t h e  f a c t  t h a t  t h e  displacements there  are expressed by d i f f e r e n t  equations. 

I n  this manner, one f i n a l l y  W i l l  have as many equations as unknowns since,  i n  

problems of physical  mechanics, obviously no indetermination whatsoever can 

exist. 

However, these  unknown forces  frequently occur i n  an i n d e f i n i t e  number: Re- 

ac t ions  of t h e  walls of t h e  clamping device o r  t h e  in t e rac t ions  of members t h a t  

o scu la t e  over a portion of t h e i r  surface; ac t ions  of o the r  p a r t s  of the  same 

member which have t o  be treated i n  this manner, f o r  example,in t h e  s ingular  && 
case of bending of a r ing  o r  of a closed dynamometric spr ing a l l  belong i n t o  

t h i s  group of unknown forces. 

calculation? 

How can one e n t e r  a l l  these small forces  i n  t h e  

To solve t h i s  problem, I developed a method in 1837 which i s  by no 

means a r b i t r a r y  and has always been successful. Let px , pY , pz be t h e  corn- 

3: M6can., Second Edition, Nos.317 and 318. 
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ponents, p a r a l l e l  t o  t h e  axes, of one of t h e  small fo rces  and l e t  a, b, c be 

t h e  coordinates of i t s  poin t  of application; i t s  moment about a s t r a i g h t  l i n e  

I p a r a l l e l  t o  x, l a i d  through t h e  poin t  of t h e  &s of t h e  body h o s e  coordinates 

are x, y ,  z ,  Will be (b  - y)px - ( c  - z)p, . 
t h e  suns of t h e  moments and components p a r a l l e l  t o  t h e  th ree  coordinates; there- 

fo re ,  l e t  %, & *  A, be these  sums so t h a t  

flowever, required here are only 

t h e  sums of t h e  moments Will become 

f r o m  which it follows t h a t  a l l  

matter what t h e i r  number might 

c 
I . .  . .  

BI + A.x - A=c, B, +. A d  + Ar'x''; 1 

I 

t h a t  i s  necessary t o  know about these forces ,  no. 

be, can be expressed f o r  any por t ion  of t h e  

bodies by six indeterminates a t  most. 

The subdivision of t he  s t r u c t u r a l  members i n t o  various p a r t s  makes i t  com- 

p l e t e l y  unnecessary t o  use t h e  transcendental d i scont inui ty  formulas which 

Poisson had utilized*. 

dual p a r t s  of one and the  same member by a comon tangent o r ,  r a the r ,  by t h e  

* gft = - which will produce t h e  s l i p .  I n  specimens P" small angles g' = - 
with double curvature, it is  a l s o  necessary t o  g ive ,a t  t h e  limits, t h e  value r e  

f e r r i n g  t o  t h e  angular displacement 

It i s  only necessary t o  connect t h e  axes of t h e  indivi- 

pr 
Gu, cw 

It Will be s t ipu la t ed  e i t h e r  t h a t  t h i s  displacement i s  zero which would apply t o  

free ends, o r  t h a t  it i s  such t h a t  the p r i n c i p a l  axes o f  t h e  sec t ion  have re- 

mained s t a t iona ry  which i s  t h e  case f o r  clampings, and so  on. 


